Оглавление

2. Лекция 1	1. Предел функции одной
переменной.	3
2.1. Чис	ловые множества 3
2.1.1.	Промежутки и множества
	3
2.2. Огр	аниченные функции 4
2.2.1.	Грани функции 4
2.2.2.	Ограниченные функции . 7
2.2.3.	Неограниченные функции
	8
2.2.4.	Локально ограниченные
функции	ı 12
2.2.5.	Лекция М02-2012-09-07 12
2.3. Пре	дел функции в точке 14
2.3.1.	Определение предела в
точке.	14
A A E Is a soul a	and the second many through a self-second many

2.3.5.	Лекция М3 2012-09-1435
2.3.6.	Бесконечно большая
функция	в точке35
2.3.7.	Односторонние пределы.
	36
2.3.8.	Свойства пределов 40
2.3.9.	Простые
неопределенности46	
A.A.Быков boombo	ook.narod.ru, boombook@yandex.ru

MA k1s1m1-n01-1b-Предел функции

26

2.3.3.

2.3.4.

Прямое доказательство

Методика вычисления

Предел в бесконечно

пределов элементарных функций.

- 3 МА k1s1m1-n01-1b-Предел функции
- 2. Лекция 1. Предел функции одной переменной.
 - 2.1. Числовые множества
 - 2.1.1. Промежутки и множества

Напомним основные определения промежутков на числовой прямой,

- 1) Окрестность, $\Omega(a) = (a \delta_1, a + \delta_2)$,
- где $\delta_1 > 0$, $\delta_2 > 0$.
- 2) Шаровая (симметричная) окрестность, $\Omega_s(a) = (a \delta, a + \delta), \ \delta > 0$.

4 MA k1s1m1-n01-1b-Предел функции
3) Проколотая окрестность,

$$\hat{\Omega}_{\delta}(a) = (a - \delta, a) \bigcup (a, a + \delta), \ \delta > 0.$$

4) Левая окрестность,

$$\Omega_{\delta}^{\scriptscriptstyle (-)}(a) = (a - \delta, a), \ \delta > 0.$$

5) Правая окрестность, $\Omega_s^{(+)}(a) = (a, a + \delta), \ \delta > 0.$

функции

2.2.1. Грани функции

Замечание. В этой главе всегда предполагаем, что функция f(x) определена на множестве X.

Определение 1. Число B называется верхней гранью (в.г.) функции f(x) на

5 MA k1s1m1-n01-1b-Предел функции множестве X, если $\forall x \in X$ верно $f(x) \le B$.

Отрицание 2 (отрицание). Число B не является верхней гранью функции f(x) на множестве X, если $\exists x \in X : f(x) > B$.

Теорема 1а. Если число B является верхней гранью функции f(x) на множестве X и D > B, то число D также является верхней гранью f(x) на множестве X. \square $\forall x \in X$ верно $f(x) \leq B$, поэтому $\forall x \in X$ верно $f(x) \leq B < D$,

поэтому $\forall x \in X$ верно $f(x) \leq D$.

Теорема 16. Если B явл. в.г. f(x) на X и D > B, то D также явл. в.г. f(x) на X.

Самостоятельно:

6 МА k1s1m1-n01-1b-Предел функции Определение 2. Число A называется нижней гранью (н.г.) функции f(x) на множестве X, если $\forall x \in X$ верно $f(x) \ge A$.

Определение 3. Функция f(x) называется ограниченной сверху на множестве X, если эта функция на этом множестве имеет верхнюю грань, т.е. если $\exists B: \forall x \in X$ верно $f(x) \leq B$.

Самостоятельно: Определение 4. Функция f(x) называется ограниченной снизу на множестве X, если эта функция на этом множестве имеет нижнюю грань, т.е. $\exists A : \forall x \in X$ верно $f(x) \geq A$.

Задание. Составьте отрицания.

МА k1s1m1-n01-1b-Предел функции
2.2.2. Ограниченные функ-

Определение 5. Функция f(x) называется ограниченной на множестве X, если эта функция на этом множестве имеет верхнюю грань и имеет нижнюю грань, т.е. $\exists A, \exists B : \forall x \in X$ верно $A \leq f(x) \leq B$. Равносильное определение: Определение 6. Функция f(x) называ-

8

2.2.3. Неограниченные функции

Определение 1. Функция f(x) называется неограниченной на множестве X, если $\forall A \ \exists x \in X : |f(x)| > A$.

Определение 2. Функция f(x) называется неограниченной сверху на множестве X, если $\forall A \; \exists x \in X : f(x) > A$.

Пример 1. $f(x) = \frac{1}{x}$ на X = (0;1) является ограниченной снизу, но неограни-

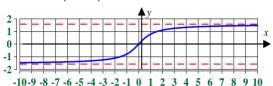
- ченной сверху. \square 1) $\forall X \in (0;1)$ верно $f(x) \ge 0$, но
- 2) $\forall A \exists x \in (0,1) : f(x) > A$, a именно,

$$x = 0,5$$
 при $A \le 0$ и $x = \frac{1}{2A}$ при $A > 0$.

9 MA k1s1m1-n01-1b-Предел функции Пример 2. Функция $f(x) = \arctan x$ является ограниченной на множестве

$$X=(-\infty,+\infty)$$
. $lacksquare$ Пусть $A=rac{\pi}{2}$, и тогда

$$\forall x \in X \ |f(x)| \le A$$
.



Пример 3. Функция $f(x) = \log_2 x$ на множестве $X = (0, +\infty)$ является неограниченной. \square Пусть A > 0.

1) Решим неравенство $\log_2 x > A$,

$$x > 2^A$$
, $x \in X$.

2) Решим $\log_2 x < m, x \in (0; 2^m), x \in X$. Оба множества непустые.



Пример 4. Функция $f(x) = \log_2 x$ на

множестве X = [1; 16], $\log_2[1; 16] \in [0; 4]$, ограничена.

См. предыдущий рисунок.

Обозначение ограниченной функции f(x) = O(1) на множестве X.

Теорема 1 (ограниченность суммы, разности, произведения). Если f(x) = O(1) (т.е. ограничена) на множестве X и

g(x) = O(1) на X, то 1) f(x) + g(x) = O(1) на X,

 $|f(x) + g(x)| \le A + B$. ■ Замечание. Для операции деления утверждение теоремы не верно. Задание. Приведите пример.

MA k1s1m1-n01-1b-Предел функции

2) f(x) - g(x) = O(1) Ha X, 3) $f(x) \cdot g(x) = O(1)$, $x \in X$.

 $\square \exists A : \forall x \in X \text{ верно } |f(x)| \leq A$

 $|f(x) + g(x)| \le |f(x)| + |g(x)| \le A + B.$

 $\exists B : \forall x \in X \text{ верно } |g(x)| \leq B$,

Так как $|a+b| \le |a|+|b|$, то

Поэтому $\forall x \in X$ верно

MA k1s1m1-n01-1b-Предел функции

12

2.2.4. Локально ограниченные функции.

2.2.5. Лекция М02-2012-09-07

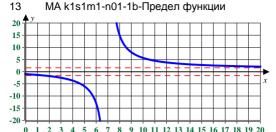
Определение 1. Функция f(x), определенная в некоторой $\Omega(a)$, называется локально ограниченной в окрестности **точки** x = a, если она ограничена в некоторой окрестности точки x = a, т.е. если

$$\exists \delta > 0, \ \exists A : \forall x \in \Omega_{\delta}(a) \text{ верно } |f(x)| \leq A.$$

Обозначение: f(x) = O(1) в $\Omega(a)$.

Определение 2. Символ O(1) на X означает ограниченную функцию на множестве X.

Пример. Пусть $f(x) = \frac{x+7}{x-7}$.



Это пример функции, локально ограниченной в окрестности любой точки числовой оси, кроме точки x = 7.

Теорема 1 (локальная ограниченность суммы, разности, произведения). Если f(x) = O(1) и g(x) = O(1) в $\Omega(a)$

(в окрестности точки
$$x = a$$
), то

1)
$$f(x) + g(x) = O(1)$$
,

2)
$$f(x) - g(x) = O(1)$$
,

3)
$$f(x) \cdot g(x) = O(1) \text{ B } \Omega(a)$$
.

14 МА k1s1m1-n01-1b-Предел функции \square а) $\exists \delta_f > 0, \ \exists A_f : \forall x \in \Omega_{\delta_f}(a)$ верно $|f(x)| \leq A_f$.

Б)
$$\exists \delta_g > 0$$
, $\exists A_g : \forall x \in \Omega_{\delta_g}(a)$ верно $\left| g(x) \right| \leq A_g$. Пусть $\delta = \min \left(\delta_f, \delta_g \right)$ и $A_f + A_g = A > 0$.

 $|f(x) + g(x)| \le A_f + A_g = A$.

2.3. Предел функции в

Тогда $\forall x \in \Omega_{\delta}(a)$ верно

точке.2.3.1. Определение предела

В ТОЧКЕ.

В точке.

В точке.

Замечание 1. Для того, чтобы можно было исследовать существование и находить значение предела функции f(x) А.А.Быков boombook.narod.ru, boombook@yandex.ru

15 МА k1s1m1-n01-1b-Предел функции при $x \to a$, достаточно потребовать, чтобы точка x = a была предельной точкой области определения X функции f(x), т.е.

$$\forall \varepsilon > 0 \ \exists x \in X : 0 < |x - a| < \varepsilon$$
.

 $|\nabla \mathcal{E} > 0| \exists x \in X . 0 < |x - a| < \varepsilon$

Равносильное условие,
$$\forall \varepsilon > 0$$
 система
$$\begin{cases} x \in X, \\ 0 < |x-a| < \varepsilon \end{cases}$$
 имеет бесконечное мно-

жество различных решений. Равносильное условие, $\exists x_{..} \in X$:

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ \text{верно} \ 0 < |x_n - a| < \varepsilon$$
,

$$n \in N$$
 , или, иначе говоря, $x_n \to a$, $x_n \neq a$.

 Замечание 2.
 Мы предполагаем, что

 функция определена в $\hat{\Omega}(a)$. Из этого

MA k1s1m1-n01-1b-Предел функции следует, что точка x = a является предельной точкой области определения Xфункции f(x). Обратное неверно. Определение 1а. (предела функции в

точке по Коши, на языке логических формул). Пусть функция f(x) определена в некоторой проколотой окрестности точки x = a. Говорят, что $\lim f(x) = b$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in X : 0 < |x - a| < \delta$$

Bepho $|f(x) - b| < \varepsilon$.

верно $|f(x)-b| < \varepsilon$.

Опр.16. Пусть функция f(x) определена в некоторой $\hat{\Omega}(a)$. Говорят, что существует $\lim_{x\to a} f(x)$, если

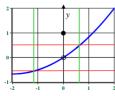
 $\exists b : \forall \varepsilon > 0 \ \exists \delta > 0$:

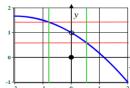
17 MA k1s1m1-n01-1b-Предел функции $\forall x \in X: 0 < |x-a| < \delta$ верно $|f(x)-b| < \varepsilon$.

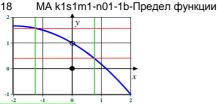
Определение 2. (предела функции в точке по Коши, на языке окрестностей). Пусть функция f(x) определена в некоторой $\hat{\Omega}(a)$ (проколотой окрестности точки x = a). Говорят, что $\lim_{x \to a} f(x) = b$,

если $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in X \cap \hat{\Omega}_{\delta}(a)$

верно $f(x) \in \Omega_{\varepsilon}(b)$.







Замечание. Еще раз напомним, что для того, чтобы можно было исследовать предел функции f(x) при $x \to a$, достаточно потребовать, чтобы точка x = a была предельной точкой области определения функции f(x).

Отрицание определения предела функции в точке по Коши (на языке логических формул). Пусть функция f(x) определена в некоторой проколотой окрестности точки x = a. Говорят, что число b не является пределом функции f(x) при $x \to a$, если

19 МА k1s1m1-n01-1b-Предел функции $\exists \varepsilon > 0 \colon \forall \delta > 0 \quad \exists x \in X : 0 < |x-a| < \delta$ и

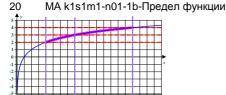
$$|f(x)-b| \ge \varepsilon$$
. Отрицание определения предела функ-

ции в точке по Коши (на языке окрестностей). Пусть функция f(x) определена в некоторой проколотой окрестности точки x = a. Говорят, что число b не является пределом функции f(x) при $x \to a$, если

$$\exists \varepsilon > 0 \colon \forall \delta > 0 \quad \exists x \in X \cap \hat{\Omega}_{\delta}(a) \colon$$
 $f(x) \notin \Omega_{\varepsilon}(b)$. Можно записать заключительную фразу этого определения в виде $f(x) \in \neg \Omega_{\varepsilon}(b)$

Пример функции, имеющей предел: $\lim_{x\to 8}\log_2 x = 3$ A.A.Быков boombook.narod.ru, boombook@yandex.ru

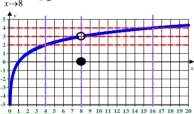
(дополнению).



2012-09-17 Лекция h-2

<mark>Пример</mark> функции, имеющей предел:

$$\lim_{x\to 8}\log_2 x = 3$$

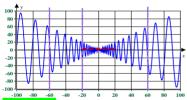


<mark>Пример</mark> функции, имеющей предел:

$$\lim_{x\to 0} x\sin x = 0.$$

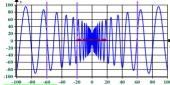
Пример функции, имеющей предел:

 $\lim_{x\to 0} x \sin(10 \ln x) = 0.$



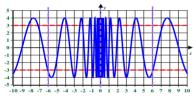
Пример функции, имеющей предел:

$$\lim_{x \to 0} \sqrt[3]{x} \sin(10 \ln x) = 0.$$



Пример функции, не имеющей предела:

$$f(x) = 4\sin(10\ln(|x|)), \ \exists \lim_{x \to 0} f(x).$$



2.3.2. Прямое доказательство существования предела

Пример 1 прямого доказательства существования предела. Докажем, что $\lim x^3 = 8$.

 $\sqrt[3]{a^3 - \varepsilon} < x < \sqrt[3]{a^3 + \varepsilon}$ $\sqrt[3]{a^3 - \varepsilon} - a < x - a < \sqrt[3]{a^3 + \varepsilon} - a$

нения неравенства $|x^3-a^3|<\varepsilon$, $-\varepsilon < x^3 - a^3 < \varepsilon$ $a^3 - \varepsilon < x^3 < a^3 + \varepsilon$

верно $|f(x)-b| < \varepsilon$. Потребуем выпол-

MA k1s1m1-n01-1b-Предел функции

Докажем даже, что $\forall a \lim x^3 = a^3$.

□ Напомним определение предела, $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in X : 0 < |x - a| < \delta$

23

 $\delta_2 = \sqrt[3]{a^3} + \varepsilon - a > 0$, и $-\delta_1 = \sqrt[3]{a^3} - \varepsilon - a < 0.$ $-\delta_1 < x - a < \delta_2$, $|x - a| < \min(\delta_1, \delta_2)$. A.A.Быков boombook.narod.ru, boombook@yandex.ru $|f(x)-b| < \varepsilon$. ■
Пример 2 прямого доказательства существования предела. Докажем, что

 $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x : 0 < |x - a| < \delta$ верно

MA k1s1m1-n01-1b-Предел функции

Важно то, что $\min(\delta_1, \delta_2) > 0$,

 $\delta(\varepsilon) = \min(\delta_1, \delta_2)$, поэтому

ствования предела. Докажем, что $\forall a \in (-1;1) \text{ верно } \limsup_{x \to a} x = \arcsin a.$

|
$$|\arcsin x - \arcsin a| < \varepsilon$$
,
 $-\varepsilon < \arcsin x - \arcsin a < \varepsilon$,
Charaem, Alto $\varepsilon + \arcsin a < \frac{\pi}{2}$

Считаем, что ε + arcsin $a < \frac{\pi}{2}$ и

$$-\varepsilon + \arcsin a > -\frac{\pi}{2}.$$

$$-\varepsilon + \arcsin a < \arcsin x < \varepsilon + \arcsin a,$$

$$\sin(\arcsin a - \varepsilon) < x < \sin(\arcsin a + \varepsilon),$$

тивные средства исследования предела.

$$-\delta_1 = \sin(-\varepsilon + \arcsin a),$$

$$-\delta_1 < x - a < \delta_2, \quad |x - a| < \min(\delta_1, \delta_2).$$

MA k1s1m1-n01-1b-Предел функции

 $\begin{cases} -(a-\sin(\arcsin a-\varepsilon)) < x-a, \\ x-a < \sin(\arcsin a+\varepsilon)-a, \end{cases}$

Важно то, что $\min(\delta_1, \delta_2) > 0$

 $+\delta_2 = \sin(\varepsilon + \arcsin a)$,

 $\delta(\varepsilon) = \min(\delta_1, \delta_2),$ поэтому $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x : 0 < |x - a| < \delta$ $|f(x)-b|<\varepsilon$.

Хлопотное дело, имеются более эффек-

26 MA k1s1m1-n01-1b-Предел функции2.3.3. Методика вычисления

2.3.3. Методика вычисления пределов элементарных функций.

Задание: доказать, что $\lim_{x \to a} f(x) = f(a)$,

если (1) $f(x) = \sin x$, (2) $f(x) = \arcsin x$,

(3) $f(x) = \log_a x$, (4) $f(x) = a^x$, и т.д.

2.3.4. Предел в бесконечно удаленной точке.

Замечание 1. Для того, чтобы можно было исследовать существование и находить значение предела функции f(x) при $x \to +\infty$, достаточно потребовать, чтобы точка $+\infty$ была предельной точкой области определения X функции f(x), т.е. $\forall B > 0 \ \exists x \in X : x > B$.

27 МА k1s1m1-n01-1b-Предел функции Равносильное условие, $\forall B$ система $\begin{cases} x \in X, \\ x > B \end{cases}$ имеет бесконечное множество

различных решений.

Равносильное условие, $\exists x_n \in X$:

 $\forall B \; \exists N : \forall n > N \; \text{ верно } x_n > B \; , \; n \in N \; ,$

или, иначе говоря, $x_n \to +\infty$. Определение 1 (предела функции при $x \to +\infty$, по Коши, на языке логических формул). Пусть x_0 -любое число, и функция f(x) определена на проме-

жутке $x \in (x_0, +\infty)$. Говорят, что $\lim_{x \to +\infty} f(x) = b \text{ , если } \forall \varepsilon > 0 \text{ } \exists A : \forall x > A$

верно $|f(x)-b| < \varepsilon$.

28 МА k1s1m1-n01-1b-Предел функции Определение 2 (предела функции при $x \to +\infty$, по Коши, на языке окрестностей). Пусть функция f(x) определена

стей). Пусть функция f(x) определена на $\Omega_R(+\infty) = (R, +\infty)$, значение R не важно. Говорят, что $\lim_{x \to +\infty} f(x) = b$, если

 $\forall \varepsilon > 0 \ \exists A : \forall x \in X \cap \Omega_A(+\infty) \$ верно $f(x) \in \Omega_{\varepsilon}(b)$. Здесь $\Omega_R(+\infty) = (R, +\infty)$.

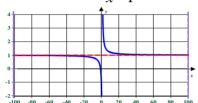
Замечание. Достаточно потребовать, чтобы функция f(x) была определена на множестве X, для которого точка $+\infty$ является предельной точкой, т.е. Определение 3 (отсутствия предела функции при $x \to +\infty$, по Коши). Пусть функция f(x) определена на $(x_0, +\infty)$. Говорят, что число b не является пре-

29 MA k1s1m1-n01-1b-Предел функции делом f(x) при $x \to +\infty$, если

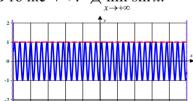
$$\exists \varepsilon > 0 : \forall A \exists x \in X, x > A : |f(x) - b| \ge \varepsilon$$
.

<mark>Пример</mark> функции, имеющей предел в

точке
$$+\infty$$
: $\lim_{x \to +\infty} \frac{x+1}{x-1} = 1$.



Пример функции, не имеющей предела в точке +∞: র lim sin x.



А.А.Быков boombook.narod.ru, boombook@yandex.ru

30 MA k1s1m1-n01-1b-Предел функции Эта функция не имеет предела и в точке $-\infty$.

Теорема 1. Если f(x) есть периодическая функция, отличная от константы, то $\mathbb{X}\lim_{x\to\infty} f(x)$. \square Заметим, что $\exists b_1$,

$$\exists b_2 \neq b_1, \ \exists x_1 \in X : f(x_1) = b_1,$$

 $\exists x_2 \in X : f(x_2) = b_2$. Пусть $b_1 < b_2$ и по-

ложим
$$\varepsilon = \frac{b_2 - b_1}{3}$$
 . Далее самостоятель-

но докажите, что никакое число b не может быть указанным пределом.

Пример прямого исследования,

$$\lim_{x \to +\infty} \frac{1}{x} = 0. \quad \left| \frac{1}{x} \right| < \varepsilon, \quad -\varepsilon < \frac{1}{x} < \varepsilon, \text{ paccmat-}$$

риваем только x > 0, $\frac{1}{x} < \varepsilon$, $x > \frac{1}{x}$, так

что $A(\varepsilon) = \frac{1}{\varepsilon}$, Пример прямого доказательства суще-

ствования предела, $\lim x^{-3} = 0$,

$$\left| x^{-3} - 0 \right| < \varepsilon, -\varepsilon < x^{-3} < \varepsilon, x > 0,$$

$$x^{-3} < \varepsilon, \quad x^3 > \varepsilon^{-1}, \quad x > \sqrt[3]{\varepsilon^{-1}},$$

$$A(\varepsilon) = \sqrt[3]{\varepsilon^{-1}} \blacksquare$$
 Аналогично убедимся в том, что

$$\forall n > 0$$
 верно $\lim_{x \to +\infty} \frac{1}{x^n} = 0.$

Пример прямого исследования,

$$\lim_{x \to +\infty} \frac{x+1}{x-1} = 1.$$

$$\left|\frac{2}{x-1}\right| < \varepsilon$$
, $-\varepsilon < \frac{2}{x-1} < \varepsilon$, рассматриваем

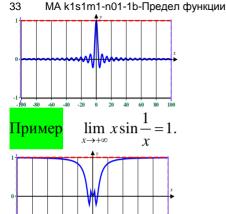
только x > 1, $\frac{2}{x-1} < \varepsilon$, $\frac{2-\varepsilon x + \varepsilon}{x-1} < 0$, $2-\varepsilon x + \varepsilon < 0$,

MA k1s1m1-n01-1b-Предел функции

 $\left|\frac{x+1}{x-1}-1\right| < \varepsilon, \ \left|\frac{x+1-x+1}{x-1}\right| < \varepsilon,$

$$2+\varepsilon<\varepsilon x,\ x>rac{2+\varepsilon}{\varepsilon},$$
 так что $A(\varepsilon)=rac{2+\varepsilon}{\varepsilon},$ \blacksquare

Пример $\lim_{x \to +\infty} \frac{\sin x}{x} = 0.$



Определение 4 (предела функции при
$$x \to -\infty$$
, по Коши, на языке логических формул). Пусть функция $f(x)$ определена при $x \in (-\infty, x_0)$, значение x_0 не

A.A.Быков boombook.narod.ru, boombook@yandex.ru

важно. Говорят, что $\lim_{x \to a} f(x) = b$, если

2. $\lim_{x \to +\infty} \arctan x = \frac{\pi}{2},$ 3. $\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2},$

Примеры прямого доказательства отсутствия предела в бесконечно удаленной

MA k1s1m1-n01-1b-Предел функции

Примеры прямого доказательства существования предела в бесконечно уда-

 $\forall \varepsilon > 0 \ \exists A > 0 : \forall x < A \$ верно

 $|f(x)-b|<\varepsilon$.

ленной точке.

точке,

1. $\lim_{x \to +\infty} \frac{x^2 + 1}{x^2 - 1} = 1$,

A.A.Быков boombook.narod.ru, boombook@yandex.ru

1. \boxtimes lim sin x, (осциллирует)

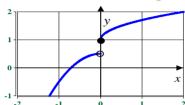
2. $\mbox{$\mathbb{X}$}$ lim x, (бесконечно большая)

- - 2.3.5. Лекция МЗ 2012-09-14
 - **2.3.6.** Бесконечно большая функция в точке

Определение 1. Пусть функция f(x)определена в $\hat{\Omega}(a)$. Говорят, что $\lim f(x) = +\infty$, или, что то же самое, f(x) является б.б. положительной при $x \rightarrow a$, или, что то же самое, $f(x) \to +\infty$ при $x \to a$, если $\forall A \ \exists \varepsilon > 0 : \forall x \in X : 0 < |x - a| < \varepsilon$ верно f(x) > A.

36 MA k1s1m1-n01-1b-Предел функции Задание. Какая разница между бесконечно большой функцией и неограниченной функцией?

2.3.7. Односторонние пределы.



Определение 1 (предела функции в точке справа по Коши, на языке логических формул). Пусть функция f(x) определена в правой полуокрестности точки x = a. Говорят, что $\lim_{x \to a+0} f(x) = b$,

если

37 MA k1s1m1-n01-1b-Предел функции $\forall \, \varepsilon > 0 \;\; \exists \, \delta > 0 \colon \forall x \in X : a < x < a + \delta$

верно $|f(x)-b| < \varepsilon$.

Определение 2 (предела функции в точке справа по Коши, на языке окрестностей). Пусть функция f(x) определена в правой полуокрестности точки x = a. Говорят, что $\lim_{x \to a+0} f(x) = b$, если

$$orall arepsilon > 0 : orall x \in \hat{\Omega}^{\scriptscriptstyle (+)}_\delta(a)$$
 верно $f(x) \in \Omega_{\scriptscriptstyle \mathcal{E}}(b)$. Здесь $\hat{\Omega}^{\scriptscriptstyle (+)}_\delta(a) = (a,a+\delta)$.

Теорема 2. (связь односторонних преде-

лов с пределом функции в точке). 1) Если $\exists \lim_{x\to a} f(x) = b$, то $\exists \lim_{x\to a+0} f(x) = b$

$$\text{и} \exists \lim_{x \to a^{-0}} f(x) = b.$$

38 МА k1s1m1-n01-1b-Предел функции 2) Если $\exists \lim_{x \to a+0} f(x) = b_1$ и $\exists \lim_{x \to a-0} f(x) = b_2$

и $b_1 = b_2 = b$, то $\exists \lim_{x \to a} f(x) = b$.

3) Если $\exists \lim_{x \to a+0} f(x) = b_1$ и

 $\exists \lim_{x \to a-0} f(x) = b_2$, причем $b_1 \neq b_2$ то

 $\lim_{x \to a} f(x)$

4) Если $\bowtie \lim_{x \to a+0} f(x) = b$, то $\bowtie \lim_{x \to a} f(x)$.

Иначе говоря, наличие и равенство двух односторонних пределов является необходимым и достаточным условием наличия двустороннего предела.

Пример.

$$\exists \lim_{x \to +0} f(x) = 4, \ \exists \lim_{x \to -0} f(x) = -4,$$

$$\lim_{x \to 0} f(x).$$

Прим 1.
$$\lim_{x \to 1-0} \frac{\left| x^2 - 1 \right|}{x - 1} = \lim_{x \to 1-0} \frac{\left| (x - 1)(x + 1) \right|}{x - 1}$$
$$= \lim_{x \to 1-0} \frac{-(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1-0} \frac{-(x + 1)}{1}$$

$$= \lim_{x \to 1-0} \frac{-(x-1)(x+1)}{x-1} = \lim_{x \to 1-0} \frac{-(x+1)}{1}$$

$$=-2$$
.

40 MA k1s1m1-n01-1b-Предел функции
Прим 2. $\lim_{x \to 1+0} \frac{\left| x^2 - 1 \right|}{x-1} = \lim_{x \to 1+0} \frac{\left| (x-1)(x+1) \right|}{x-1}$

$$= \lim_{x \to 1+0} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1-0} (x+1) = 2.$$

2.3.8. Свойства пределов.

Теорема 1 (о локальной ограниченности функции, имеющей предел). Если $\exists \lim f(x) = b$, то f(x) = O(1) в окрест-

$$\mathbf{HOCTH} \ x = a$$
.

 $\frac{1}{1}$ Теорема 2. Если f(x) определена в

$$\hat{\Omega}_{\delta_f}(a)$$
, $\lim_{x\to a} f(x) = b$, $g(x)$ определена

в
$$\hat{\Omega}_{\delta_g}(a)$$
 и $\lim_{x\to a} g(x) = c$, то

1)
$$\lim (f(x) + g(x)) = b + c$$
,

 $\square 1. a) \ \forall \varepsilon > 0 \ \exists \delta_1 > 0 : \forall x \in \hat{\Omega}_{\varepsilon_1}(a) \ \text{Bep-}$

4) если к тому же $c \neq 0$, то $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{b}{c}$.

MA k1s1m1-n01-1b-Предел функции

2) $\lim (f(x) - g(x)) = b - c$,

3) $\lim (f(x) \cdot g(x)) = b \cdot c$,

 $\forall x \in \hat{\Omega}_{s}(a)$ верно

 $|f(x)+g(x)-b-c|<\varepsilon$.

б) $\forall \varepsilon > 0 \; \exists \delta_2 > 0 : \forall x \in \hat{\Omega}_{\varepsilon_2}(a)$ верно $|g(x)-c|<\frac{\varepsilon}{2}$. Поэтому $\delta=\min(\delta_1,\delta_2)$ и

HO $|f(x)-b| < \frac{\varepsilon}{2}$,

 $|g(x)-c| < \frac{c}{2}, -\frac{c}{2} < g(x)-c < \frac{c}{2},$ $\frac{c}{2} < g(x) < \frac{3c}{2}, \frac{1}{g(x)} < \frac{2}{c}.$

b)
$$\forall \varepsilon_2 > 0 \ \exists \delta_2 > 0 : \forall x \in \hat{\Omega}_{\delta_2}(a)$$
 верно $|g(x) - c| < \varepsilon_2, \ g(x) = c + q(x),$ $|q(x)| < \varepsilon_2.$ c) Пусть для определенности $c > 0$. Тогда $\exists \delta_3 > 0 : \forall x \in \hat{\Omega}_{\delta_3}(a)$ верно

42 MA k1s1m1-n01-1b-Предел функции $\blacksquare 4. \ a) \ \forall \varepsilon_1 > 0 \ \exists \delta_1 > 0 : \forall x \in \hat{\Omega}_{\varepsilon_1}(a) \ \text{вер-}$

HO $|f(x)-b| < \varepsilon_1$, f(x) = b + p(x),

 $|p(x)| < \varepsilon_1$.

 $\left| \frac{f(x)}{g(x)} - \frac{b}{c} \right| = \left| \frac{f(x)c - g(x)b}{g(x)c} \right|$ $= \left| \frac{\left(b + p(x) \right) c - \left(c + q(x) \right) b}{g(x) c} \right|$ $= \frac{1}{|g(x)|} \left| \frac{p(x)c - q(x)b}{c} \right| < \frac{2}{|c|} \frac{\varepsilon_1 |c| + \varepsilon_2 |b|}{|c|}$

MA k1s1m1-n01-1b-Предел функции Поэтому при $\delta = \min(\delta_1, \delta_2, \delta_3) > 0$ и

 $<\frac{2}{|c|} \mathcal{E}_1 + \frac{2|b|}{c^2} \mathcal{E}_2 = \mathcal{E}$, если положить $\frac{2}{|c|}\varepsilon_1 = \frac{\varepsilon}{2}$ и $\frac{2|b|}{c^2}\varepsilon_2 = \frac{\varepsilon}{2}$.

43

 $\forall x \in \hat{\Omega}_{\delta}(a)$ верно

MA k1s1m1-n01-1b-Предел функции

Пример 1. найти
$$\lim_{x \to +\infty} \frac{x^2 + x + 1}{x^2 - x + 1}$$
.

$$\lim_{x \to +\infty} \frac{x^2 + x + 1}{x^2 - x + 1} = \lim_{x \to +\infty} \frac{1 + \frac{1}{x} + \frac{1}{x^2}}{1 - \frac{1}{x} + \frac{1}{x^2}} =$$

$$\lim_{x \to +\infty} \frac{1+0+0}{1-0+0} = 1.$$

Пример 2. найти $\lim_{x \to +\infty} \frac{x^3 + x^2 + x + 1}{x^2 - x + 1}$.

$$\lim_{x \to +\infty} \frac{x^3 + x^2 + x + 1}{x^2 - x + 1} \lim_{x \to +\infty} x \frac{1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3}}{1 - \frac{1}{x} + \frac{1}{x^2}} =$$

$$\lim_{x \to +\infty} x \frac{1+0+0}{1-0+0} = \lim_{x \to +\infty} x = +\infty.$$

45 МА k1s1m1-n01-1b-Предел функции Заметим, что в данном случае предел не существует, но функция является бесконечно большой положительной, обозначаем символом $+\infty$.

Пример 3. найти $\lim_{x \to +\infty} \frac{x^2 + x + 1}{x^3 - x + 1}$.

$$\lim_{x \to +\infty} \frac{x^2 + x + 1}{x^3 - x + 1} = \lim_{x \to +\infty} \frac{\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3}}{1 - \frac{1}{x^2} + \frac{1}{x^3}}$$

$$\dots \quad 0 + 0 + 0$$

 $= \lim_{x \to +\infty} \frac{0+0+0}{1-0+0} = 0.$

Теорема. Пусть
$$m \ge 1$$
 и $n \ge 1$. Тогда
$$\lim_{x \to +\infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \ldots + b_1 x + b_0},$$

где $a_n \neq 0, \ b_m \neq 0,$ 1) равен 0 при $0 \leq n < m,$

- 2) равен $\frac{a_n}{b_m}$ при $0 \le n = m$,
- 3) ∞ (не существует) при $0 \le m < n$, причем в этом случае функция бесконечно большая, так что можно также записать, что $\lim ... = +\infty$ или $\lim ... = -\infty$

в зависимости от знаков $a_n \neq 0, b_m \neq 0$.

2.3.9. Простые неопределенности.

Пример 1. Найдите
$$\lim_{x\to 3} \frac{x^2 - 7x + 12}{x^2 - 5x + 6}$$
.

Заметим, что при x = 3 числитель и знаменатель равны нулю.

$$\lim_{x \to 3} \frac{x^2 - 7x + 12}{x^2 - 5x + 6} = \lim_{x \to 3} \frac{(x - 3)(x - 4)}{(x - 2)(x - 3)}$$

 $= \lim_{x \to 3} \frac{\left(\sqrt{x+13} - 4\right)\left(\sqrt{x+13} + 4\right)}{\left(x-3\right)\left(\sqrt{x+13} + 4\right)}$ $= \lim_{x \to 3} \frac{x-3}{\left(x-3\right)\left(\sqrt{x+13} + 4\right)}$

MA k1s1m1-n01-1b-Предел функции

Пример 2. Найдите $\lim_{x\to 3} \frac{\sqrt{x+13-4}}{x-3}$.

Заметим, что при x = 3 числитель и

 $= \lim_{x \to 3} \frac{x-4}{x-2} = \lim_{x \to 3} \frac{3-4}{3-2} = -1.$

знаменатель равны нулю.

 $\lim_{x\to 3} \frac{\sqrt{x+13-4}}{x-3}$

 $= \lim_{x \to 3} \frac{1}{\sqrt{x+13}+4} = \frac{1}{\lim_{x \to 3} \sqrt{x+13}+4} = \frac{1}{8}.$ A.A.Быков boombook.narod.ru, boombook@yandex.ru